Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework
نویسندگان
چکیده
منابع مشابه
Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework
We review algorithms developed for nonnegativematrix factorization (NMF) and 1 nonnegative tensor factorization (NTF) from a unified view based on the block coordinate 2 descent (BCD) framework. NMF and NTF are low-rank approximation methods for matri3 ces and tensors in which the low-rank factors are constrained to have only nonnegative 4 elements. The nonnegativity constraints have been shown...
متن کاملDID: Distributed Incremental Block Coordinate Descent for Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) has attracted much attention in the last decade as a dimension reduction method in many applications. Due to the explosion in the size of data, naturally the samples are collected and stored distributively in local computational nodes. Thus, there is a growing need to develop algorithms in a distributed memory architecture. We propose a novel distributed a...
متن کاملConverged Algorithms for Orthogonal Nonnegative Matrix Factorizations
Abstract: This paper proposes uni-orthogonal and bi-orthogonal nonnegative matrix factorization algorithms with robust convergence proofs. We design the algorithms based on the work of Lee and Seung [1], and derive the converged versions by utilizing ideas from the work of Lin [2]. The experimental results confirm the theoretical guarantees of the convergences.
متن کاملNewton-Based Optimization for Nonnegative Tensor Factorizations
Tensor factorizations with nonnegative constraints have found application in analyzing data from cyber traffic, social networks, and other areas. We consider application data best described as being generated by a Poisson process (e.g., count data), which leads to sparse tensors that can be modeled by sparse factor matrices. In this paper we investigate efficient techniques for computing an app...
متن کاملFast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations
Nonnegative matrix factorization (NMF) and its extensions such as Nonnegative Tensor Factorization (NTF) have become prominent techniques for blind sources separation (BSS), analysis of image databases, data mining and other information retrieval and clustering applications. In this paper we propose a family of efficient algorithms for NMF/NTF, as well as sparse nonnegative coding and represent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Global Optimization
سال: 2013
ISSN: 0925-5001,1573-2916
DOI: 10.1007/s10898-013-0035-4